Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Damage and disruption from flooding have rapidly escalated over recent decades. Knowing who and what is at risk, how these risks are changing, and what is driving these changes is of immense importance to flood management and policy. Accurate predictions of flood risk are also critical to public safety. However, many high‐profile research studies reporting risks at national and global scales rely upon a significant oversimplification of how floods behave—as a level pool—an approach known as bathtub modeling that is avoided in flood management practice due to known biases (e.g., >200% error in flood area) compared to physics‐based modeling. With publicity by news media, findings that would likely not be trusted by flood management professionals are thus widely communicated to policy makers and the public, scientific credibility is put at risk, and maladaptation becomes more likely. Here, we call upon researchers to abandon the practice of bathtub modeling in flood risk studies, and for those involved in the peer‐review process to ensure the conclusions of impact analyses are consistent with the limitations of the assumed flood physics. We document biases and uncertainties from bathtub modeling in both coastal and inland geographies, and we present examples of physics‐based modeling approaches suited to large‐scale applications. Reducing biases and uncertainties in flood hazard estimates will sharpen scientific understanding of changing risks, better serve the needs of policy makers, enable news media to more objectively report present and future risks to the public, and better inform adaptation planning.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence–based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.more » « less
-
Abstract The Surface Water and Ocean Topography (SWOT) satellite has the potential to transform global hydrologic science by offering simultaneous and synoptic estimates of river discharge and other hydraulic variables. Discharge is estimated from SWOT observations of water surface elevation, width, and slope. A first assessment using just the highest quality SWOT measurements, over the first 15 months (March 2023–July 2024) of the mission evaluated at 65 gauged reaches shows results consistent with pre‐launch expectations. SWOT estimates track discharge dynamics without relying on any gauge information: median correlation is 0.73, with a correlation interquartile range of 0.51–0.89. SWOT estimates capture discharge magnitude correctly in some cases but are biased (median bias is 50%) in others. There are already a total of 11,274 ungauged global locations with highest quality SWOT measurements where SWOT discharge is expected to accurately track discharge variations: this value will increase as SWOT data record length grows, algorithms are refined and SWOT measurements are reprocessed. This first look indicates that SWOT discharge is performing as expected for SWOT data that achieve performance requirements, providing observed information on discharge variations in ungauged basins globally.more » « lessFree, publicly-accessible full text available May 16, 2026
An official website of the United States government
